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ABSTRACT

Let f be a meromorphic correspondence on a compact Kähler manifold.

We show that the topological entropy of f is bounded from above by the

logarithm of its maximal dynamical degree. An analogous estimate for

the entropy on subvarieties is given. We also discuss a notion of Julia and

Fatou sets.

1. Introduction

Let (X, ω) be a compact Kähler manifold of dimension k. A meromorphic

correspondence f : X → X is a meromorphic multivalued self-map on X . The

precise definition will be given in Section 3. One can compose correspondences

and consider the dynamical system associated to f , i.e., study the sequence

of iterates fn := f ◦ · · · ◦ f , n times, of f . Any projective manifold admits

dynamically interesting correspondences. The topological entropy h(f) of f is
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defined as in [1, 13, 12], see Section 4. It measures the divergence of the orbits

of f and the complexity of the associated dynamical system.

In this paper, we show that h(f) is bounded from above by the logarithm

of the maximal dynamical degree of f which is easier to compute or estimate.

The dynamical degree dp(f) of order p measures the growth of the norms of

fn acting on the cohomology group Hp,p(X, C) when n tends to infinity, see

Section 3. Let Γ[n] denote the graph of (f, f2, . . . , fn) in Xn+1. We will use the

following intermediate indicator, introduced by Gromov [13], which measures

the growth of the volume of Γ[n] :

lov(f) := lim
n→∞

log
(
volume(Γ[n])

1/n
)

.

We will see that the last limit always exists. Our main result is the following

theorem which is new even for holomorphic correspondences. It answers a

problem raised by Gromov [13, 12].

Theorem 1.1: Let f be a meromorphic correspondence on a compact Kähler

manifold (X, ω) of dimension k. Let dp(f) denote the dynamical degree of order

p of f . Then

h(f) ≤ lov(f) = max
0≤p≤k

log dp(f).

The case of holomorphic maps was proved by Gromov [13], see also [12], and

the case of meromorphic maps was proved by the authors in [8, 7]. For other

contexts, see [6, 10, 3, 5] and the references therein. The proofs in the previous

cases cannot be extended to correspondences. We need here new geometric

ingredients. In the last two sections we extend the previous result to the entropy

of f on a subvariety of X and we discuss a notion of Julia and Fatou sets

for correspondences. Our goal is also to develop a calculus for meromorphic

correspondences.

Note that if f is a holomorphic self-map on X , by Yomdin’s theorem [20], we

have h(f) ≥ maxp log dp(f); then h(f) = maxp log dp(f), see also [15, 17, 16, 11,

18]. However, this is false for holomorphic correspondences, even in dimension 1.

Let (z, w) denote the canonical affine coordinates of C×C in P1×P1. Consider

the correspondence f on P1 with irreducible graph Γ ⊂ P1 × P1 of equation

w2 = z2 + 1. The reader can check that d0(f) = d1(f) = 2 and h(f) = 0.
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2. Regularization of currents

Recall that the mass of a positive (p, p)-current T on a compact Kähler manifold

(X, ω) of dimension k is given by ‖T ‖ := 〈T, ωk−p〉. It depends continuously on

T . When T is positive closed, ‖T ‖ depends only on the class of T in Hp,p(X, C).

In order to simplify notation, if Y is an analytic set of pure dimension in X ,

we often denote by Y , instead of [Y ], the current of integration on Y and by

‖Y ‖ its mass. The main tool used in the proof of Theorem 1.1 is the following

result.

Theorem 2.1 ([8, 7]): Let (X, ω) be a compact Kähler manifold of dimension

k. Let T be a positive closed (p, p)-current on X . Then there are positive closed

(p, p)-currents T± and a constant c > 0 independent of T such that

i) T = T + − T− and ‖T±‖ ≤ c‖T ‖;

ii) T± are limits of smooth positive closed (p, p)-forms on X .

We deduce the following consequence.

Corollary 2.2: Let π : (X1, ω1) → (X2, ω2) be a holomorphic map between

two compact Kähler manifolds. Let Y ⊂ X1 be an analytic subset of pure

dimension and let Y ′ be a Zariski open subset of Y such that the restriction τ

of π to Y ′ is locally a submersion on X2. If T is a positive closed current on

X2, then τ∗(T ) extends to a positive closed current on X1 such that

‖τ∗(T )‖ ≤ c‖Y ‖ ‖T ‖,

where the constant c > 0 depends only on (X1, ω1), (X2, ω2) and π.

Proof. Observe that τ∗(T ) defines a positive closed current on the Zariski open

subset X \ (Y \ Y ′) of X . If τ∗(T ) has finite mass, a theorem of Skoda [19]

implies that its trivial extension defines a positive closed current on X . Then,

we only need to estimate the mass of τ∗(T ).

The constants that we use here are independent of Y , Y ′ and T . By Theorem

2.1, there are smooth positive closed forms Tn converging to a current T ′ ≥ T

and such that ‖Tn‖ ≤ c′‖T ‖. It follows that there is a constant c′′ > 0 such

that c′′‖T ‖ωp
2 − Tn is cohomologous to a smooth positive closed form for every

n. Here, (p, p) is the bidegree of T and we use the fact that Hp,p(X2, C) has

finite dimension. So the class of Tn is bounded by the class of c′′‖T ‖ωp
2. Since
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τ is locally a submersion on Y ′ ⊂ Y , we have

‖τ∗(T )‖ ≤ lim sup
n→∞

‖Y ∧ π∗(Tn)‖ ≤ c′′‖T ‖ ‖Y ∧ π∗(ωp
2)‖ ≤ c‖Y ‖ ‖T ‖.

In the last inequalities, we use the fact that the mass of a positive closed current

depends only on its cohomology class.

Remark 2.3: If T is the current of integration on a subvariety Y2 ⊂ X2 then we

obtain from the previous corollary that

‖Y ′ ∩ π−1(Y2)‖ ≤ c‖Y ‖ ‖Y2‖.

This is a Bézout type theorem in which we do not assume that the intersection

Y ∩ π−1(Y2) is of pure dimension.

3. Correspondences and dynamical degrees

Let π1 and π2 denote the canonical projections of X2 onto its factors. A mero-

morphic correspondence f on X is given by a finite holomorphic chain

Γ =
∑

Γi such that

i) for each i, Γi is an irreducible analytic subset of dimension k of X2;

ii) π1 and π2 restricted to each Γi are surjective.

We call Γ the graph of f . We do not assume that the Γi’s are smooth or

distinct. Of course, we can write Γ =
∑

njΓ
′
j where nj are positive integers

and Γ′
j are distinct irreducible analytic sets. Then, a generic point in the support⋃

Γ′
j of Γ belongs to a unique Γ′

j and nj is called the multiplicity of Γ at x.

In what follows we use the notation
∑

Γi. The indice i permits to count the

multiplicities. Let Γ−1 denote the symmetric of Γ with respect to the diagonal

of X2. The correspondence f−1 associated to Γ−1 is called the adjoint of f .

Observe that if Ω and Ω′ are dense Zariski open sets in X , then, by condition

ii), all components of Γ intersect π−1
1 (Ω) ∩ π−1

2 (Ω′). Hence, Γ is the closure of

its restriction to π−1
1 (Ω) ∩ π−1

2 (Ω′). We will use this property several times.

We define formally f := π2 ◦ (π1|Γ)−1. More precisely, if A is a subset of X ,

define

f(A) := π2(π
−1
1 (A) ∩ Γ) and f−1(A) = π1(π

−1
2 (A) ∩ Γ).

So, generically the fibers f(x) and f−1(x) are finite subsets of X . The sets

I1(f) :=
{
x ∈ X, dimπ−1

1 (x) ∩ Γ > 0
}
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and

I2(f) :=
{
x ∈ X, dimπ−1

2 (x) ∩ Γ > 0
}

are the first and second indeterminacy sets of f ; they are of codimension

≥ 2. One can compare the restriction of π1 to Γ with a blow up of X along

I1(f) and π−1
1 (I1(f))∩ Γ is contracted by π1 to I1(f). If I1(f) = ∅ we say that

f is holomorphic. If generic fibers of π1|Γ contain only one point, we obtain a

dominant meromorphic self-map on X .

We can compose correspondences. Let f and f ′ be two correspondences on

X of graphs Γ =
∑

i Γi and Γ′ =
∑

j Γ′
j in X2. Then, the graph of f ◦ f ′ is

equal to Γ ◦ Γ′ :=
∑

i,j Γi ◦ Γ′
j , where Γi ◦ Γ′

j is defined as follows.

Let Pi(f) denote the smallest analytic subset of X such that πi restricted

to Γ \ π−1
i (Pi(f)) defines an unramified covering over X \ Pi(f). Let Ω ⊂

X \ P1(f) be a dense Zariski open subset of X . Let Ω′ ⊂ X \ P1(f
′) be a

similar Zariski open set for f ′ such that f ′(Ω′) ⊂ Ω. We can choose for example

Ω′ = (X \ P1(f
′)) \ f ′−1(X \ Ω). Let Σ be the closure in X2 of the set

{
(x, z) ∈ Ω′ × X, there is y ∈ X with (x, y) ∈ Γ′

j and (y, z) ∈ Γi

}
.1

The composition Γi◦Γ′
j is the holomorphic k-chain with support in Σ where the

multiplicity of a generic point (x, z) is defined as the number of y’s satisfying

the previous conditions.

Observe that Σ and Γ ◦ Γ′ do not depend on the choice of Ω and Ω′. Note

that compositions of irreducible correspondences can be reducible. This is the

reason why we have to deal with multiplicities. For example, if the graph Γ of

an irreducible correspondence f is symmetric with respect to the diagonal of

X2 and if the degree of πi|Γ is larger than 1 then f2 is reducible since its graph

contains the diagonal ∆ of X2 as one component. Note also that the graph of

f ◦ f−1 contains ∆ but in general we do not have f ◦ f−1 = id.

Correspondences act on smooth forms. If α is a smooth (p, p)-form on X ,

define

f∗(α) := (π1)∗
(
Γ ∧ π∗

2α
)

and f∗(α) := (π2)∗
(
Γ ∧ π∗

1α
)
.

Recall that we identify Γ with the current it represents. Observe that if α is

positive closed then f∗(α) and f∗(α) are positive closed (p, p)-currents which are

smooth on a dense Zariski open set and have no mass on analytic subsets of X .

1 if we take (x, z) ∈ X ×X, we may obtain components whose projections are not equal to

X; this is the case for the iterates of non-algebraically stable maps in the sense of [18].
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They are represented by forms with coefficients in L 1. For example, f∗(α) is

smooth in X \P1(f) and has no mass on P1(f). Moreover, if the positive closed

(p, p)-forms α and α′ are cohomologous then f∗α and f∗α′ (resp. f∗α and f∗α
′)

are cohomologous; in particular, we have ‖f∗α‖ = ‖f∗α′‖ and ‖f∗α‖ = ‖f∗α′‖.

Define

λp(f) := ‖f∗(ωp)‖ =

∫

X

f∗(ωp) ∧ ωk−p = 〈Γ, π∗
2ωp ∧ π∗

1ωk−p〉

=

∫

X

f∗(ω
k−p) ∧ ωp.

This integral can be computed cohomologically. It measures the norm of the

linear operator f∗ acting on the cohomology group Hp,p(X, C).

The following proposition shows that the sequence
(
cλp(f

n)
)

is sub-multipli-

cative, see also [9]. Hence, λp(f
n)1/n converge to a constant dp(f). We call

dp(f) the dynamical degree of order p of f . It is easy to check that d0(f)

and dk(f) are the topological degrees (i.e. the number of points in a generic

fiber counted with multiplicities) of π1|Γ and π2|Γ and that dp(f
n) = dp(f)n.

Proposition 3.1: Let f and f ′ be two correspondences on (X, ω). Then, there

exists a constant c > 0 independent of f and f ′ such that

λp(f ◦ f ′) ≤ cλp(f)λp(f
′).

For the proof we will need the following lemma.

Lemma 3.2: Let Ω ⊂ X \ P1(f) and Ω′ ⊂ X \ P1(f
′) be dense Zariski open

subsets of X such that f(Ω) ⊂ X \ P2(f) and f ′(Ω′) ⊂ Ω \ P2(f
′). If S is an

arbitrary current on X , then

(f ◦ f ′)∗|Ω′(S) = f ′∗
|Ω′

(
f∗
|Ω(S)

)
.

Proof. Let U be a small neighbourhood of a point in Ω′. Since Ω′∩P1(f
′) = ∅,

the restriction of f ′ = π2 ◦ (π1|Γ′ )−1 to U is given by a family of biholomorphic

maps ur : U → Ur ⊂ Ω. If U is small enough, f = π2◦(π1|Γ)−1 restricted to each

Ur is given by a family of biholomorphic maps urs : Ur → Urs ⊂ X . Hence f ◦f ′

restricted to U is given by the family of biholomorphic maps urs ◦ur : U → Urs.
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We have

f ′∗
|U

(
f∗
|Ω(S)

)
=

∑

r

u∗
r

( ∑

s

u∗
rs(S)

)
=

∑

r,s

u∗
r

(
u∗

rs(S)
)

=
∑

r,s

(urs ◦ ur)
∗(S) = (f ◦ f ′)∗|U (S).

This implies the lemma.

Proof of Proposition 3.1. Observe that (f ◦ f ′)∗(ωp) is a positive closed cur-

rent on X . Moreover, outside an analytic set, (f ◦ f ′)∗(ωp) and f ′∗(f∗(ωp))

are well-defined and smooth. We obtain from Lemma 3.2 that these forms

are equal on some Zariski open set Ω′. By Theorem 2.1, there exist positive

closed smooth (p, p)-forms Tn, converging to a current T ≥ f∗(ωp), such that

‖Tn‖ ≤ c‖f∗(ωp)‖ = cλp(f). Hence, there is another constant c > 0 such that

cλp(f)ωp − Tn is cohomologous to a smooth positive closed form for every n.

We have

‖f ′∗
|Ω′

(
f∗(ωp)

)
‖ ≤ lim sup

n→∞
‖f ′∗(Tn)‖ ≤ cλp(f)‖f ′∗(ωp)‖ = cλp(f)λp(f

′).

Hence, since (f ◦ f ′)∗(ωp) has no mass on analytic sets,

‖(f ◦ f ′)∗(ωp)‖ = ‖(f ◦ f ′)|Ω′(ωp)‖ = ‖f ′∗
|Ω′

(
f∗(ωp)

)
‖ ≤ cλp(f)λp(f

′).

Remark 3.3: Let Ap,q(f) denote the norm of f∗ on Hp,q(X, C). One can prove

as in [4] that

Ap,q(f) ≤ c
√

λp(f)λq(f)

where c > 0 is a constant independent of f . This inequality and the Lefschetz

fixed points formula allow to get an asymptotic estimate of the number of

periodic points of order n of f when they are isolated. For example, if dk(f)

is strictly larger than the other dynamical degrees, this number is equal to

dk(f)n
(
1 + o(1)

)
.

4. Entropy

We now define the topological entropy of f . We call n-orbit of f any sequence

(x0, i1, x1, i2, x2, . . . , xn−1, in, xn)

where x0, . . ., xn are points of X with xr 6∈ I1(f), and i1, . . ., in are indices

such that (xr−1, xr) ∈ Γir
for every r. Let F be a finite family of n-orbits of f .
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We say that F is ǫ-separated if for all distinct elements in F

(x0, i1, x1, i2, x2, . . . , xn−1, in, xn) and (x′
0, i

′
1, x

′
1, i

′
2, x

′
2, . . . , x

′
n−1, i

′
n, x′

n)

we have either ir 6= i′r or distance(xr , x
′
r) > ǫ for some r. As we already

explained, the indices ir allow to count the multiplicities. When Γ is irreducible,

we always have ir = i′r, then the indices ir in the definition of n-orbit can be

dropped. But since we are going to consider the graph of fn, we cannot deal

only with the irreducible case.

Definition 4.1 (see [1, 13, 12]): Define the topological entropy of f by

h(f) := sup
ǫ>0

lim
n→∞

1

n
log max

{
#F , F an ǫ-separated family of n-orbits of f

}
.

We say that the n-orbit O = (x0, i1, x1, i2, x2, . . . , xn−1, in, xn) is regular if

for every 1 ≤ s ≤ n, Γis
is, in a neighbourhood of (xs−1, xs), a graph over

each factor of X2. Since any n-orbit can be approximated by regular n-orbits,

in Definition 4.1, one can consider only regular orbits. This is why we will

consider only the extension by zero of all the currents defined on a Zariski open

set.

As observed in [13, 12], f is conjugated to a shift σ on the space X∞, the

closure of the set of the infinite orbits (x0, i1, x1, i2, . . . , in, xn, . . .). It follows

that h(f) = h(σ), and since σ is continuous, one gets that h(fn) = nh(f). By

Definition 4.1, we also have h(f−1) = h(f).

Let M = {m1, . . . , ms}, with 0 ≤ m1 ≤ m2 ≤ · · · ≤ ms, be a multi-index.

We define the graph ΓM of (fm1 , . . . , fms) in Xs+1 as the closure of the set of

points (x0, xm1
, . . . , xms

) ∈ Xs+1 associated to a regular ms-orbit

O = (x0, i1, x1, i2, x2, . . . , xms−1, ims
, xms

).

This is a holomorphic k-chain in Xs+1 where the multiplicity of a generic point

(x0, xm1
, . . . , xms

) in ΓM is the number of the associated regular ms-orbits O.

If M = {n} we obtain the graph Γn of fn in X2. If M = {1, . . . , n}, we obtain

the graph Γ[n] of (f, f2, . . . , fn) in Xn+1.

Let Πi : Xn+1 → X denote the canonical projections on the factor of index i,

0 ≤ i ≤ n. Define ωi := Π∗
i (ω). We use for Xn+1 the canonical Kähler form,

ω0 + · · · + ωn. Recall that

lov(f) = lim sup
n→∞

log
(
volume(Γ[n])

1/n
)

= lim sup
n→∞

log ‖Γ[n]‖
1/n.
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We divide the proof of Theorem 1.1 in two parts.

Proof of the inequality. We follow an idea due to Gromov [13], see also [12].

Let F be an ǫ-separated family of regular n-orbits of f . We have to com-

pare #F with ‖Γ[n]‖. We associate to each element O = (x0, i1, . . . , in, xn)

of F an open set BO ⊂ Γ[n] which is the set of the points (x′
0, . . . , x

′
n) ∈

Xn+1 with (x′
r−1, x

′
r) ∈ Γir

and distance(x′
r , xr) < ǫ/2 for every r. Here, the

distance between two points in Xn+1 is the maximum of the distances between

their projections on factors of Xn+1. Since F is ǫ-separated, the balls BO are

disjoint (two balls with indices (i1, . . . , in) 6= (i′1, . . . , i
′
n) are also considered as

disjoint balls). Hence, the total mass of all the BO is smaller than ‖Γ[n]‖.

On the other hand, BO contains an analytic subset of dimension k of the

ball of diameter ǫ and of center (x0, . . . , xn) in Xn+1. A theorem of Lelong [14]

implies that ‖BO‖ ≥ cǫ2k where c > 0 is a constant independent of ǫ and of n.

Then, the number of BO , which is equal to #F , satisfies

#F ≤ c−1ǫ−2k‖Γ[n]‖.

The inequality h(f) ≤ lov(f) in Theorem 1.1 follows from Definition 4.1.

Proof of the equality. Recall that π1, π2 : X2 → X denote the canonical pro-

jections. We have

‖Γn‖ = 〈Γn, (π∗
1ω +π∗

2ω)k〉 =
k∑

p=0

(
k

p

)
〈Γn, π∗

1ωk−p ∧π∗
2ωp〉 =

k∑

p=0

(
k

p

)
λp(f

n).

Hence

max
0≤p≤k

λp(f
n) ≤ ‖Γn‖ ≤ 2k max

0≤p≤k
λp(f

n).(1)

On the other hand, the projection of Γ[n] on the product X2 of the first and

the last factors of Xn+1, is equal to Γn. It follows that ‖Γ[n]‖ ≥ ‖Γn‖, hence

lov(f) ≥ lim inf
n→∞

log ‖Γ[n]‖
1/n ≥ max log dp(f).

For the other inequality, it is enough to show that ‖Γ[n]‖ . nk(δ + ǫ)n, where

δ := maxp dp(f) and ǫ is a fixed positive constant. This also implies that

lim log ‖Γ[n]‖
1/n exists. We have

‖Γ[n]‖ = 〈Γ[n], (ω0 + · · · + ωn)k〉 =
∑

0≤ns≤n

〈Γ[n], ωn1
∧ · · · ∧ ωnk

〉.
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We only need to prove that 〈Γ[n], ωn1
∧ · · · ∧ ωnk

〉 ≤ c(δ + ǫ)n, c > 0. The

following proposition will be useful for that purpose.

Proposition 4.2: There is a constant cs > 0 independent of the multi-index

M = {m1, . . . , ms}, 0 ≤ m1 ≤ · · · ≤ ms, such that

‖ΓM‖ ≤ cs(δ + ǫ)ms .

Proof. The proof uses an induction on s. For s = 1 we have ΓM = Γm1
, and

the desired estimate follows from the relation (1).

Assume the proposition for |M | = s − 1. We will prove it for |M | = s.

Let τ1 : Xs+1 → X2 be the canonical projection on the two first factors

and let τ2 : Xs+1 → Xs be the projection on the s last factors. Define

M ′ := {m2−m1, . . . , ms−m1}. We will prove that ΓM = τ−1
1 (Γm1

)∩τ−1
2 (ΓM ′)

in a Zariski open set, then we will apply Corollary 2.2.

Let Ω ⊂ X be the Zariski open set of all the points x0 ∈ X which admit

d0(f)ms regular ms-orbits, i.e. the maximal number of regular ms-orbits. Let

Ωs+1 denote the Zariski open subsets of points in Xs+1 whose projections on

the first factor X belong to Ω. Observe that ΓM ∩Ωs+1 is Zariski dense in ΓM .

Hence, we only need to estimate ‖ΓM ∩ Ωs+1‖.

Consider a regular ms-orbit O := (x0, i1, . . . , ims
, xms

), x0 ∈ Ω, associated

with a point z in ΓM ∩ Ωs+1. The point τ1(z) is associated with the regular

m1-orbit O1 := (x0, i1, . . . , im1
, xm1

), i.e. with a point in Γm1
. The point τ2(z)

is associated with the regular (ms − m1)-orbit O2 := (xm1
, im1

, . . . , ims
, xms

),

i.e. with a point in ΓM ′ . It follows that in Ωs+1, ΓM is the intersection of

τ−1
1 (Γm1

) with τ−1
2 (ΓM ′).

Let Ω2 denote the Zariski open subset of points in X2 whose projections on

the first factor X belong to Ω. The choice of Ω implies that in Ω2, Γm1
is

locally a graph over the second factor of X2. It follows that τ2, restricted to

τ−1
1 (Γm1

) ∩ Ωs+1, is locally biholomorphic. Then, we can apply Corollary 2.2

and Remark 2.3 to π = τ2, and to components of τ−1
1 (Γm1

) and ΓM ′ . We obtain

‖ΓM‖ = ‖ΓM ∩ Ωs+1‖ ≤ c‖τ−1
1 (Γm1

)‖ ‖ΓM ′‖ ≤ c′‖Γm1
‖ ‖ΓM ′‖,

where c, c′ depend only on (X, ω) and on s. The case |M | = 1 and the case

|M | = s − 1 imply the result.

End of the proof of Theorem 1.1. We will prove that 〈Γ[n], ωn1
∧ · · · ∧ωnk

〉 ≤

c(δ + ǫ)n, c > 0, for 0 ≤ n1 ≤ · · · ≤ nk ≤ n. Let Π : Xn+1 → Xk+1 be the
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canonical projection on the product of factors with indices 0, n1, . . ., nk. We

show that Π defines a map of topological degree d0(f)n−nk between Γ[n] and

ΓM , where M := {n1, . . . , nk}.

Observe that if we fix a generic orbit O ′ := (x0, i1, . . . , ink
, xnk

) there are

d0(f)n−nk choices for O ′′ := (ink+1, xnk+1, . . . , in, xn) such that O := (O ′, O ′′)

is a point in Γ[n]. By definition, O ′ corresponds to a point in ΓM . Hence, Π

defines a map of topological degree d0(f)n−nk between Γ[n] and ΓM .

If ω̃ denotes the canonical Kähler form on Xk+1, then

〈Γ[n], ωn1
∧. . .∧ωnk

〉 ≤ 〈Γ[n], Π
∗(ω̃k)〉 = d0(f)n−nk〈ΓM , ω̃k〉 = d0(f)n−nk‖ΓM‖.

By Proposition 4.2, ‖ΓM‖ ≤ ck(δ + ǫ)nk . The desired estimate follows.

5. Entropy on a subvariety

Let Y ⊂ X be an analytic subset of pure dimension m or more generally a

holomorphic m-chain. Assume that for a generic point x0 ∈ Y the sets fn(x0)

do not intersect I1(f) for any n ≥ 0. Such a point admits n-orbits. We define

the entropy h(f, Y ) of f on Y as in Definition 4.1 but we consider only the orbits

O = (x0, i1, . . . , in, xn) starting from a point x0 ∈ Y . Define the holomorphic

chain ΓY
[n] as the closure in Xn+1 of the set of n-orbits O = (x0, i1, x1, . . . , in, xn)

with x0 ∈ Y generic, and

lov(f, Y ) := lim sup
n→∞

log
(
volume(ΓY

[n])
1/n

)
.

We have the following result which generalizes Theorem 1.1.

Theorem 5.1: Let Y be as above. Assume that all the orbits starting from a

generic point x0 ∈ Y are regular 2. Then

h(f, Y ) ≤ lov(f, Y ) ≤ max
0≤p≤m

log dp(f).

Such an estimate should be useful in the study of dimensional entropies and

Lyapounov exponents. We refer to Newhouse [16] and Buzzi [2] for this purpose.

The proof uses the same idea as in Theorem 1.1. The first inequality is left to

the reader. For the second inequality, in order to estimate volume(ΓY
[n]), it is

sufficient to apply Proposition 5.2 below for T = Y . Proposition 5.2 is more

2 this hypothesis is in fact not necessary, but the proof for the general case requires a

study of the pullback operator on currents that we will consider in a future work; for

meromorphic maps this hypothesis is clearly satisfied.



40 TIEN-CUONG DINH AND NESSIM SIBONY Isr. J. Math.

general than Proposition 4.2. However, we keep Proposition 4.2 because its

proof contains a useful geometric argument.

Let M = {m1, . . . , ms}, 0 ≤ m1 ≤ · · · ≤ ms, be a multi-index. Let Γ̃M

denote the largest Zariski open subset of ΓM which is locally a graph over the

first factor of Xs+1. Define u : Γ̃M → X the canonical projection on the first

factor and δm := max0≤p≤m dp(f).

Proposition 5.2: There is a constant cs > 0 independent of M such that if T

is a positive closed (k − m, k − m)-current on X , then u∗(T ) defines a positive

closed current of bidimension (m, m) on Xs+1 with

‖u∗(T )‖ ≤ cs‖T ‖(δm + ǫ)ms .

Proof. By Skoda’s theorem [19], the trivial extension of u∗(T ) is positive and

closed in Xs+1 provided that u∗(T ) has finite mass. So, it is enough to estimate

‖u∗(T )‖. By Theorem 2.1, the case where T is smooth implies the general case.

Hence, we can assume that T is smooth. The proof uses an induction on s.

For s = 1 we have ΓM = Γm1
. We need to show that 〈u∗(T ), ωr

0 ∧ ωm−r
1 〉 .

‖T ‖(δm + ǫ)m1 , for 0 ≤ r ≤ m. Choose a constant c > 0, independent of T ,

such that c‖T ‖ωk−m+r − T ∧ ωr is cohomologous to a smooth positive closed

form. Hence, since T is smooth

〈u∗(T ) ∧ ωr
0, ω

m−r
1 〉 = 〈u∗(T ∧ ωr), ωm−r

1 〉

≤ c‖T ‖〈ωk−m+r
0 ∧ Γm1

, ωm−r
1 〉

= c‖T ‖λm−r(f
m1).

The desired estimate follows.

Now, assume the inequality for |M | = s − 1 and for arbitrary T , smooth or

not. We will prove it for |M | = s and for T smooth. We have to estimate

〈u∗(T ), ωr0

0 ∧ · · · ∧ ωrs

s 〉 with r0 + · · · + rs = m. Since this integral is equal to

〈u∗(T ∧ ωr0), ωr1

1 ∧ · · · ∧ ωrs

s 〉, we can replace T by T ∧ ωr0 and assume that

r0 = 0. Now, let τ2 be, as in Proposition 4.2, the projection from Xs+1 on the

last s factors. Define Θ := ω̃m where ω̃ is the canonical Kähler form on Xs. It

is enough to estimate 〈u∗(T ), τ∗
2 (Θ)〉 = 〈τ2∗(u

∗(T )), Θ〉.

Observe that τ2∗(u
∗(T )) is supported in ΓM ′ (see Proposition 4.2) and has no

mass on analytic subsets of ΓM ′ , since T is smooth. Let Γ̃M ′ denote the largest

Zariski open subset of ΓM ′ which is locally a graph over the first factor X of

Xs and let u′ : Γ̃M ′ → X denote the canonical projection on this factor. We
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will prove as in Lemma 3.2 that τ2∗(u
∗(T )) = u′∗(fm1

∗ (T )) on a Zariski open

set of ΓM ′ . We first assume this and complete the proof.

The case s = 1 implies that

‖fm1

∗ (T )‖ =
∥∥π2∗

(
π∗

1(T ) ∧ Γm1

)∥∥ ≤ ‖π∗
1(T ) ∧ Γm1

‖ . ‖T ‖(δm + ǫ)m1 .

The case |M | = s − 1, applied to M ′ and fm1

∗ (T ), yields
〈
τ2∗(u

∗(T )), Θ
〉

=
〈
u′∗(fm1

∗ (T )), Θ
〉

. ‖fm1

∗ (T )‖(δm + ǫ)ms−m1

. ‖T ‖(δm + ǫ)ms .

It follows that 〈u∗(T ), τ∗
2 (Θ)〉 . ‖T ‖(δm + ǫ)ms which implies the result.

Now, we prove the identity τ2∗(u
∗(T )) = u′∗(fm1

∗ (T )) on a Zariski open set of

ΓM ′ . Let U ⊂ ΓM ′ be a small neighbourhood of a generic point in ΓM ′ . Then

u′ defines a biholomorphic map between U and an open set V ⊂ X . If U is

small enough, f−m1 restricted to V is given by a family of biholomorphic maps

ur : V → Vr ⊂ X . Observe that a generic point (x, z) ∈ ΓM is sent by τ2 to

z ∈ ΓM ′ if and only if x is sent by fm1 to u′(z). Then, τ−1
2|U is given by a family

of biholomorphic maps between U and the open sets in ΓM

Ur :=
{(

ur(u
′(z)), z

)
∈ X × Xs, z ∈ U

}
.

These maps, by definition of τ2, are equal to z 7→
(
ur(u

′(z)), z
)
. From the

definition of u, we deduce that u◦τ−1
2|U is given by the family of the biholomorphic

maps ur ◦ u′ : U → Vr. Hence, on U we have

τ2∗(u
∗(T )) =

∑

r

(ur ◦ u′)∗(T ) = u′∗
( ∑

r

u∗
r(T )

)
= u′∗(fm1

∗ (T )).

This implies the result.

6. Julia and Fatou sets

We discuss here a notion of Julia and Fatou sets for correspondences. Let

Bx(r) denote the ball of center x and of radius r. The following function, which

describes the local growth of volume of graph, has strong links with the Julia

and Fatou sets :

Φ(x) := inf
r>0

lim sup
n→∞

1

n
log volume

(
Γn ∩ π−1

1 (Bx(r))
)

(we can also consider Γ[n] instead of Γn). Since π1 restricted to Γn has topo-

logical degree d0(f)n, we have Φ(x) ≥ log d0(f). Proposition 4.2 implies that
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Φ(x) ≤ maxp log dp(f). It is easy to check that the function Φ is upper semi-

continuous. One can study the sets {Φ < δ} and {Φ ≥ δ} as analogues of Fatou

and Julia sets. It is likely that ergodic invariant measures of maximal entropy, if

they exist, are supported on the set where Φ takes the maximal value. Consider

some examples.

Example 6.1: Let f : Pk → Pk be a holomorphic map of algebraic degree d ≥ 2.

It is well-known that d−pnfn∗(ωp
FS) converges to T p. Here, ωFS denotes the

Fubini-Study form on Pk and T denotes the Green (1, 1)-current of f . The vol-

ume of Γn∩π−1
1 (Bx(r)) is the sum over p of the integrals 〈fn∗(ωp

FS)|Bx(r), ω
k−p
FS 〉

on Bx(r). One estimates these integrals using the speed of convergence of

d−nfn∗(ωFS) toward T , see [18, 3, 5], and one deduces that Φ(x) = log dp if

x ∈ supp(T p) \ supp(T p+1). The support supp(T p) of T p and its complement

are the Julia and the Fatou sets of order p associated with f . For p = 1, one

obtain the classical Fatou and Julia sets, see [11]. The function Φ takes only

k + 1 values and the set {Φ ≥ log dp} supports the invariant positive closed

current T p.

The following trivial example shows that, in general, Fatou and Julia sets

cannot be characterized only by the values of Φ.

Example 6.2: Consider f : P1 → P1 given by z 7→ 2z, where z is an affine coor-

dinate. Then Φ(x) = 0 everywhere but the family (fn)n≥0 is locally equicontin-

uous except at 0. The limit of Γn contains a singular fiber π−1
1 (0) as component.

Taking a product of f with other holomorphic maps gives analogous examples

in any dimension with positive entropy.

One sees in the example below that the meromorphic case is quite more

delicate.

Example 6.3: Let f : P2 → P2 be the meromorphic map given by

(z, w) 7→ (z−d, w−d), d ≥ 2,

where (z, w) denotes affine coordinates of P2. Using the fact that f2(z, w) =

(zd2

, wd2

), we obtain that Φ(0) = 0; but 0 is a point of indeterminacy of f .

Now define

Ψ(x) := lim sup
r→0

lim sup
n→∞

volume
(
Γn ∩ π−1

1 (Bx(r))
)

r2kd0(f)n
.
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It is left to the reader to check that if f is a holomorphic endomorphism of

Pk then {Ψ < ∞} and {Ψ = ∞} are the Fatou and Julia sets of f .
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